
Automated Testing of
Embedded Systems
Using SiL and HiL

Matthias Miehl

2019-11-13 18:00

Testautomatisierung Meetup

TOP-Tagungszentren AG
Emil-Figge-Str. 43, Dortmund

An Introduction

2 / 342019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

Introduction

● Matthias Miehl
● Studied Electrical Engineering
● Software developer for 4 years

Until October at SOREL GmbH in Wetter.
From Januar at cbb Software GmbH in Lübeck.

makomi.net
● Projects (Python, TDD)
● Blog (Git, Z-Wave)
● Telegram group: embedded_sw_quality

 “Relevant articles, news, and insights regarding
 all aspects of software quality with a focus on
 embedded systems.“

https://makomi.net/
https://t.me/embedded_sw_quality

3 / 34

Goals

● Give an introduction to automated testing of embedded systems.
● Highlight differences when testing embedded systems.
● Share the biggest challenges and questions that came up.
● An interesting discussion.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

4 / 34

What is an embedded system?

Our working definition
A physical device that contains a small computer purpose-built
for the task at hand. This computer typically performs measurement
and control tasks.

[2][1]

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

5 / 34

What is an embedded system? (cont‘d)

[3]

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

6 / 34

What are SiL and HiL tests?

The SW or HW is made to believe
that it is part of a real physical system.

A test stand adapts all IOs for this purpose.

Test type: functional black box test.
Act as acceptance tests in our concept.

Example: HiL test stand

Sends electrical signals to the DUT, in order to emulate external HW.
Interprets the outputs of the DUT, in order to capture its reaction.

Parameterizes the DUT (e.g. via UART). Typically done by user or other ES.
● Setup: Load factory settings, select program, set parameters, ...
● Teardown: ...

Adapter boards are required for the different IO types of the DUT.

Software in the Loop, Hardware in the Loop

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

7 / 34

About SOREL

● Founded in 1991.
● Originally: Analog heating controllers
● Currently: Digital heating controllers and room thermostats

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

8 / 34

Initial situation

Development resources
● SW devs: 3 internal, 4 external + 1 or 2 students
● Testers: 1 key person + 2 or 3 Students

Product to be tested

Embedded-specific challenge in automated testing:
Establish connection to the HW. Every embedded system is different and
has its own requirements regarding the test infrastructure. Therefore often DIY solutions.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

9 / 34

Current development process
Interactions.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

10 / 34

Typical issues

● Tasks are not completed within the scheduled time.
The more complex the task, the more it is misjudged.

● The software fails to start over a long period of time or
crashes repeatedly and the reason is not found.

● There are more and more defects and it takes ever longer
until even simple defects are found and corrected.

● < 50% of the time remains for refactoring, planning, and new features.
With a declining tendency.

● Software developers too often receive incomplete and/or incorrect
specifications. This leads them to think up plausible user and
technical requirements instead of programming – which of course
does not work, especially with complex tasks.

● Things that used to work, suddenly don‘t work anymore.

● ...

What is the root cause and what has to change?

Consequence: The stress level for all participants increases continuously.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

11 / 34

Realizations regarding SW dev process

● The more complex the task, the more
important becomes proper engineering
(spec, design, TDD, Clean Code, ...).

● Every test type catches different defects.
Combine several different test types
to find as many defects as possible.

● It is impossible to optimize everything
equally (dev time, code space, code
execution speed, code cleanlyness).
One has to prioritize and whatever comes
last, suffers the most (typically testing).

● Automation is required if one wants to
work in small task increments, i.e.
fast feedback loops a.k.a. Agile.

● For software, the software dev process
determines the resulting software quality.

● Only fix a bug if you have a failing test.

● Use best practices when starting a
new project. -> Anhang B.

Not limited to embedded systems or automated testing.

„The Economics of Software Quality“ [4]

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

12 / 34

Solution approach
i.e. the interesting part of the presentation.

1. Prevent new damage (technical debt)
2. Repair existing damage (technical debt)
3. Automate high ROI tasks
4. Metrics
5. Use acceptance and system tests (SiL, HiL)

-> New development process

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

13 / 34

1. Prevent new damage (technical debt)

(a) Only make changes to code, if the code is in a good condition,
i.e. it is easy to add a feature and obvious how to fix a bug.
Otherwise, refactor the code prior to making any change.

(b) Fix defects as early as possible in the development process
by using quality gates after major steps. This will allow us to
expect a certain level of quality in the following step.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
Solution approach

14 / 34

2. Repair existing damage (technical debt)

Problematic parts of the software that are large and central
to the system, are refactored proactively to reduce the
amount of new technical debt being created in their vicinity,
by being the basis for new code.

Furthermore, since they are large, refactoring them takes
some time and must be done before a feature needs to
be added or a defect needs to be fixed in them. (cp. 1a)

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
Solution approach

15 / 34

3. Automate high ROI tasks

Create faster feedback loops by automating what currently makes
the most sense to be automated:
- Has good ratio of being useful (task takes a lot of time + performed often)
- Easy/ quick to automate
- Makes sense in the bigger picture of where we want to be in the end

Example:
 1. Automate integration
 2. Pre-commit tests (Git best practices, coding guidelines, ...)
 3. Unit tests

We don't need to fully implement each step, prior to taking the next.
Once the ground work is done for one step, it is relatively easy to
add more steps and improve existing ones. In the end, previously
separate steps can be combined to one highly automated big step.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
Solution approach

16 / 34

4. Metrics

We define metrics, collect data, and interpret it to understand what is
happening/ whether we are improving, and what can be optimized.
Measure your current situation to determine whether you improve.

Interesting metrics:
● Static analysis: compiler, linters, code complexity, ...
● Ratio between time spent implementing features vs. finding&fixing defects.
● Defect removal efficiency.

Adopt the technologies that will get us above 95% in total
defect removal efficiency before delivering the software.

● Cost of delivering a feature of certain complexity.
● Cost of fixing a defect at a certain stage.

Also: Keep an eye out for the path towards automated SiL and HiL testing.
One important prerequisite: written requirements/ functional specification.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
Solution approach

17 / 34

New development process

(1) Interactions

SiL and HiL test stands have
an identical API and are
available as network resources.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.

18 / 34

zoom: left

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

19 / 34

zoom: right

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

SiL and HiL test stands have
an identical API and are
available as network resources.

20 / 34

(1) Interactions: HiL test stand

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
New development process

21 / 34

(2) Process

1. Idea

2. Specification
2.1 User requirements aka requirements spec (Lastenheft)
2.2 QG1: Validation with customer
2.3 Technical requirements aka functional spec (Pflichtenheft)
2.4 QG2: Make sure the tech reqs are complete, clear, consistent, and correct.

3. Implementation (by oneself) (-> details p23)
3.1 SW design
3.2 Code implementation
 Trace code back to tech reqs by linking tests and commits to lines/ items of tech reqs.
3.3 QG3

(a) Pre-commit tests (engineering/ tech reqs for developing the SW) (-> details p24)
(b) Acceptance tests (SiL)

3.4 Request pre-commit peer code review

4. Implementation (group)
4.1 QG4: Manual pre-commit peer code review
4.2 Automated integration into dev branch (where all other devs base their work on)

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
New development process

22 / 34

(2) Process (cont‘d)

5. In depth tests
5.1 QG5

(a) Production and debug build
 All following stages use this binary -> Deploy what you test!
 Generate trend data: warnings, (more in-depth/ better) static analysis, unit tests, ...
(b) Acceptance tests (HiL)
 Generate trend data: memory usage, timing data, … [a]

Feeds it to the CI server for visualization.
(c) (in parallel/ continuously done) manual/ exploratory tests
(d) (in parallel/ continuously done) stress tests (time intensive)
 Ex.: capacity/ throughput, long running, fuzzing, property testing

5.2 Queue Release Candidate (RC) for release
 + tag respective commit in VCS with RC ID to connect it to all test results

6. Deployment
6.1 Automatically upload RC to update server once manually authorized
6.2 Receive device telemetry for field tests
 Ex.: warnings, errors, kernel panics, sensor/ actuator anomalies
6.3 QG6: Customer ;-)

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
New development process

23 / 34

(2) Process detail: devs submitting a new increment of work

1. Rebase on development branch

2. Compile code (personal build)

3. Run pre-commit tests

4. Run SiL acceptance tests

5. Make changes and return to #2 until done

6. Once A-OK: Request peer Code Review

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
New development process

24 / 34

(2) Process detail: pre-commit tests

Keep them fast and reliable!

Example: Let devs to run parts of the pre-commit tests during implementation.

● Git Best Practices

● No translation file issues?

● No new static analyzer issues (in the lines/ files touched)?
(linters, code complexity)

● Does it compile?

● No new warnings (in the lines/ files touched)?
-Wall -Wextra -pedantic …

● All unit tests green?

● Smoke test 1: Does the application run?

● Smoke test 2: Does the application perform its most fundamental function?

● Dynamic code analysis

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
New development process

25 / 34

(3) Expansion stages/ design ideas for the infrastructure

a. Semi-automate integration process (until it is finally fully automated)

b. TDD or at least unit tests

c1. Create CI/CD infrastructure design
c2. Implement and document new CI/CD infrastructure
c3. Integrate unit tests into the new infrastructure
c4. Integrate more: static analysis, code size monitoring, ...

d1. Build HiL test stands
d2. Write acceptance tests and integrate them

e. Build SiL test stands and integrate them

f1. SiL + process simulation
f2. HiL + process simulation

g1. Simulataneous testing of multiple controllers connected via CAN
g2. Virtual CAN controllers

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

i.e. the interesting part of the presentation.
New development process

26 / 34

Current challenges

Software quality (testing, CI/CD, embedded) is a big field.
- Difficult to grasp as a newbie.
- Difficult to recognize what defines the situation one is in.
 - What is the root cause?
 - What are our requirements and which are easy to implement?
 Hence, difficult to formulate a well adapted plan from scratch
 for building a CI/CD infrastructure.

Poor conditions
- Lots of new stuff: Testing, CI/CD, embedded.
- Not much time time and few people.

Result
Slow progress and great uncertainty about what helps the most
and in which order test types should be implemented.

Iterative and explorative approach necessary.
- Con: Cost and time intensive.
- Pro: Internal know-how and an individual (optimal?) solution.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

27 / 34

Specific uncertainties and questions

Relatively clear; Does somebody have any practical experience?
1) SiL/ HiL: Building your own solution vs. buying one?

2) Design
 How detailed?
 Which abstractions to choose?
 How much modularity is enough?

Less clear
3) Which test types first? (unit, integration, system)

4) Open source the core and develop it publicly?

5) Requirements engineering for such a small company
 5.1) Which degree of traceability makes sense?
 5.2) Which software to use for managing the
 traceability matrix and tests?

6) How to best approach the process simulation?
 Does somebody have any practical experience?

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

28 / 34

 7) How to determine "defect removal efficiency" in practice?

 8) How well does our current approach match our situation?
 Do we focus on what is most important?
 How detailed should the analysis and plan be?

 9) How to best deal with a lack of knowledge and
 experience in order to achieve good and fast progress?

10) Which abstractions/ architecture diagrams are best suited
 to support one when automating a process?
 (infrastructure, interactions, decision flow graphs, ...)

Specific uncertainties and questions (cont‘d)

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

29 / 34

Appendix A: Useful tools and topics
Toolchain in a docker container
- dockcross: https://github.com/dockcross/dockcross
 Explanation: CppCon 2018: Michael Caisse
 “Modern C++ in Embedded Systems - The Saga Continues”
 https://www.youtube.com/watch?v=LfRLQ7IChtg&t=14m39s

Automated code formatting
- clang-format: clangformat.com

Compile time reduction
- Combining SCons and Ninja builds: https://el-tramo.be/blog/scons2ninja/
- Activate LTO (Link Time Optimization): -Flto (youtube.com/watch?v=dOfucXtyEsU&t=56m)

Git Best Practices
- git-cop: https://github.com/bkuhlmann/git-cop
- pre-commit: https://pre-commit.com/
- git-style-guide: https://github.com/agis/git-style-guide

Complexity metrics
- lizard: https://github.com/terryyin/lizard
- ravioli: https://github.com/ElectronVector/ravioli

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

https://github.com/dockcross/dockcross
https://www.youtube.com/watch?v=LfRLQ7IChtg&t=14m39s
https://clangformat.com/
https://el-tramo.be/blog/scons2ninja/
https://www.youtube.com/watch?v=dOfucXtyEsU&t=56m
https://github.com/bkuhlmann/git-cop
https://pre-commit.com/
https://github.com/agis/git-style-guide
https://github.com/terryyin/lizard
https://github.com/ElectronVector/ravioli

30 / 34

Appendix A: Useful tools and topics (cont‘d)
Static code analysis
- Frama-C: http://frama-c.com/download.html
- clang static analyzer: https://clang-analyzer.llvm.org/
- clang-tidy: https://clang.llvm.org/extra/clang-tidy/
- infer: https://github.com/facebook/infer
- cppcheck: https://github.com/danmar/cppcheck
- PVS-Studio: https://www.viva64.com/en/pvs-studio/
- gcc-poison: https://github.com/leafsr/gcc-poison (w/o strlen and strcmp)

Dynamic code analysis
- Google AddressSanatizer: https://github.com/google/sanitizers/wiki/AddressSanitizer
- LLVM Clang: https://clang.llvm.org/
- gcc: -fsanitize=address -fsanitize=undefined -std=c11 -fdiagnostics-color
 Instrumentation options: https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Symbolic execution
- History of symbolic execution: https://github.com/enzet/symbolic-execution

Property testing
- Fuzzing vs. Property Testing: https://news.ycombinator.com/item?id=20279500
 HackerNews discussion and explanation
- rapidcheck: https://github.com/emil-e/rapidcheck

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

http://frama-c.com/download.html
https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://github.com/facebook/infer
https://github.com/danmar/cppcheck
https://www.viva64.com/en/pvs-studio/
https://github.com/leafsr/gcc-poison
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://clang.llvm.org/
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://github.com/enzet/symbolic-execution
https://news.ycombinator.com/item?id=20279500
https://github.com/emil-e/rapidcheck

31 / 34

Appendix B: Best practices for new projects
Lightweight processes for improving code quality and identifying problems early:

1) Fix all of your warnings
2) Set up a static analysis tool for your project (linter, code complexity, ...)
3) Measure and tackle complexity in your software
4) Create automated code formatting rules
5) Have your code reviewed
6) „s/“ directory for common actions (https://chadaustin.me/2017/01/s/)
7) Setup Doxygen
8) Setup a code formatter
9) Be reasonable
 - Use a VCS like Git
 - Use a sensible directory structure (bin, build, doc, tools, src, …)
 - Automate the use of static analysis tools
 - ...

Based on an article by Embedded Artistry:
https://embeddedartistry.com/newsletter-archive/2018/3/5/march-2018-lightweight-processes-to-improve-quality

Hint: Subscribe to “Embedded Artistry“ newsletter.

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

https://chadaustin.me/2017/01/s/
https://embeddedartistry.com/newsletter-archive/2018/3/5/march-2018-lightweight-processes-to-improve-quality

32 / 34

Image references
[1] https://www.aldec.com/images/content/TySOM_Embedded-Systems.png
[2] https://www.elprocus.com/wp-content/uploads/2016/10/Embedded-System.png
[3] http://www.theengineeringprojects.com/wp-content/uploads/2016/11/automotive.png
[4] http://www.informit.com/store/economics-of-software-quality-9780132582209

All SOREL logos and hardware images are provided by courtesy of
SOREL GmbH Mikroelektronik.

Text references
[a] Jacob Beningo, „5 Embedded System Characteristics Every Engineer Should Monitor“,
 https://www.beningo.com/5-embedded-system-characteristics-every-engineer-should-monitor/,
 2019-02-14, Zugriff: 2019-11-12

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

https://www.aldec.com/images/content/TySOM_Embedded-Systems.png
https://www.elprocus.com/wp-content/uploads/2016/10/Embedded-System.png
http://www.theengineeringprojects.com/wp-content/uploads/2016/11/automotive.png
http://www.informit.com/store/economics-of-software-quality-9780132582209
https://www.beningo.com/5-embedded-system-characteristics-every-engineer-should-monitor/

33 / 34

Questions?

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

34 / 34

Thank you!

E-Mail: say-hi@makomi.net

Slides: makomi.net/posts/automated-testing-of-embedded-systems

Telegram group: embedded_sw_quality
“Relevant articles, news, and insights regarding
 all aspects of software quality with a focus on
 embedded systems.“

2019-11-13 Testautomatisierung Meetup / Automated Testing of Embedded Systems

mailto:say-hi@makomi.net
https://makomi.net/posts/automated-testing-of-embedded-systems
https://t.me/embedded_sw_quality

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

